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Use of successive continuation procedures for the confluent hypergeometric functions is 
developed, analyzed, and then applied to the evaluation of Bessel functions K,(x), K,(x), 
Ki,(x), as well as Fourier series C,“=l cos(nc) K,(nb). A Miller formula for Kiy(x) and K;,(x) 
is also discussed. 

1. INTRODUCTION 

The need to evaluate various functions for a succession of arguments and fixed 
parameters has motivated us to consider generalized two-dimensional exponential 
series 

with T, , T,, T, ,... as a sequence of operators. These series generalize the matrix 
exponential series exp(T) = I + hT + . . . , which is used to continue solutions of 
homogeneous differential equations with constant coefficients, whereas we will use 
our generalized series to continue the confluent hypergeometric functions U(a, b, x) 
and M(u, b, x), which satisfy linear homogeneous equations whose coefficients are not 
constant. In this computational approach one needs to start out with well-defined 
function values. In [14] we gave a general formula for the confluent functions 
U(a, b, x), but it is still of interest to look at some special cases. 

In order to demonstrate the utility of the method we shall discuss the computation 
of the Bessel functions K,(X), K,(x) and KJx). One has a useful scientific application 
of our method with regard to the computation of Fourier series of the form 

2 cos(nc) K&b), 

where b > 0 is small. These series were discussed in the recent paper of Fripiat and 
156 

OOZI-9991/81/110156-11$02.00/O 
Copyright 0 1981 by Academic Press, Inc. 
All rights of reproduction in any form reserved. 



GENERALIZED EXPONENTIAL OPERATORS 151 

Delhalle [4] in connection with the calculation of Madelung energies for polymers. 
On the other hand, the Bessel function of pure imaginary parameter 

Kiv(x) = Joffl exp(-x cash t) cos(vt) dt 

as well as its derivative are important functions which have many occurrences. Some 
effective integration procedures were developed by Boris and Oran [2] in support of 
calculations of molecular cross-sections. These functions also occur in con~e~t~o~ 
with bremstrahlung in Jackson [5]. Their occurrence in number theory is describe 
by Cartier [3]. A rare treatment of these functions from the point of view of special 
functions is to be found in Lebedev [7], but the usual formulas have r~rnai~.~~ 
entirely inadequate for the determination of their values. 

Quite recently in [ 131 we reported on a continuation operator method for 
evaluating incomplete r-functions, a method which was related to, but a little dustiest 
from, the Taylor series method considered by Rudenberg [91D The approach 
considered here is more genera1 than that in [ 131, but does not subsume our earlier 
paper. 

2. THE FIRST CONTINUATION QPERATQR 

The confluent hypergeometric function U(a, b, x) and modified covalent 
hypergeometric function F(a, b, x) = [T(b - a)/T(b)] M(a, b, x) have the integral 
representations 

(3) r(a) U(a, b, x) = es jy e-*“(t - l)a-‘tb--a-l dt, 

where Re(a) > 0 and Re(x) > 0, and 

r(a) F(a, b, x) =j: eXtta-‘(l - t)b-a-l &, 

where Re(a) > 0 and Re(b - a) > 0. 
These functions satisfy identical recursion relations 

(b - a) U(a, b, x) - (b + x) U(a, b + 1, x) + xU(a, b + 2, x) = 0, (5) 

(b - a) F(a, b, x) - (b ;t x) F(a, b + l), x) -t- xF(a, b + 2, x) = cf?-J 

It is easy to derive the Taylor expansions 

U(a, b, x - h) = eeh(U(a, b, x) + hU(a, b f 1, x) + h’U(a, b + 2, x)/2! + .+‘ ), (7) 

F(a, b, x - h) = eph(F(a, b, x) + hF(a, b + 1, x) + h’F(a, b -t- 2, x)/2! -t- 1.~ ), (8) 
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and thus we can introduce the operator series 

constructed from transformations on two-vectors defined by 

u-b-n+ 1 b-1+x+n 
x 1) 

v . 
X 

One now has the formal continuation properties 

T,,,(U(a, b, x), U(a, b + 1, x)) = (U(a, b, y), U(a, b + 1, y)), (11) 

T,JF(a, b, x), F(a, b + 1, x)) = (F(a, b, y), J’(a, b + 1, y)). (12) 

The modified Wronskian for the two pairs of functions is 

W(x) = det U(a,b,x) 
I+, b, x) 

J-(b-4exx-b 
r(a) . 

(13) 

Thus if a is not a negative integer then TX,Y continues two independent pairs of 
functions. 

LEMMA. If /3 = Re(b) > 1 then one has the estimate 

[T(u) U(u, b, x)1 < jeX( Ixl’-“r@ - 1). (14) 

ProoJ: It is easy to see from the integral representation (3) that (14) holds when 
Re(u) > 0 and Re(x) > 0. The condition on Re(u) is eliminated by considering the 
confluent recursive relations in the first index. The condition on x is eliminated by 
considering successive continuations as well as the estimate 

which is a valid estimate when h =x - y satisfies (h/xl < 1. 

THEOREM. If a is not a negative integer then the series for T&u, v) converges 
for arbitrary (u, v) provided I h/xl < 1 where h = x - y. 

Proof. One sees this from the observation that (8) converges without restriction 
and that (7) converges if I h/xl < 1. Thus T&u, v) converges for two linearly 
independent choices of (u, v). 
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3. CONTINUATIONTHROUGHTHE DIFFERENTIAL EQUATION 

The functions M(a, b, x) and U(a, b, X) satisfy the differential equation 

d=w 
xz+(b-x)$-aw=O. 

If D denotes d/dx then the Leibnitz formula “(uv) = (D”u)v + 
(:)(D”-‘u)Dv + I.- + zDnv leads to the relation xd”+ 2w/dx” T2 i 
(b+n-x)d”+‘w/dx”+’ - (a + n) d”w/dx” = 0. If one now considers the Taylor 
expansion pair 

w(x + h) = w(x) + h(dw/dx) + h2(d2w/dxZ)/2! + 1.0 , 

dw 

dx lx+h 
= dw/dx + h(d*w/dx’) + hz(d3w/dx3)/3! + .a. , 

then one is motivated to define the continuation operator 

where h = x - y and where 

S&v)= (& (n-~+~)u+(~-“I”;!) v (18) 

THEOREM. If a is not a negative integer then the series for the co~ti~u~t~o~ 
operator S,,, converges whenever j h/xl < 1, where h = x - y. 

The relations between TX,y and S,,,. One has the relation DU(a, 6, x)= 
U(a, b, x) - U(a, b + 1, x) and the relation DM(a, b, x) = M(a, b, x) - 
((b - a)/b) M(a, b + 1, x). If one defines W(u, v) = (u, u - v) then one obtains 

TX,, = wsx,, w* 11% 

We will subsequently show tat TX,y and S,,, have different numerical behavior. 
If one introduces R, = (-h/n)S, then one has 

R,(u, v) = (-vh/n, -((n - 1 + a)u + (x - b - n c l)v)h/xn) 633 

S,,,=I+R,+R,R,+RjR2Rl+.... (214 

By virtue of the update relations (n + 1)/h = n/h c l/h and x(n $ a)/ 
xn/h + x/h one can evaluate R, with two multiplications and two divisions. It should 
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be clear that in computation with small x one might modify the update method to 
avoid division by small quantities. 

The transitivity relations 

(22) 

allow one to define TX,y and S, y , uniquely for all positive numbers x and y. 

4. STABILITY OF THE CONTINUATION OPERATORS 

The esssential stability of the continuation ~,.J(U(a, b, x), U(u, b + 1, x)) = 
(U(a, b, y), U(a, b + 1, JJ)) (with y <x) comes about because TX,y decreases the 
magnitude of (F(a, b, x), F(a, b + 1, x)). Similarly one has the essential stability of 
TJ(F(u, b, x), F(a, b + 1, x)) = @‘(a, b, y), F(u, b + 1, v)) (with Y > x). The term 
“essential stability” means that the continuation passes on rounding errors and is not 
error correcting, unlike the case considered in [13 1. Nevertheless the process is 
dependent on an error-cancallation phenomenon because the extraneous solutions 
cancels out when one proceeds in the correct direction. 

It is useful to note that the coefficients in the series F(u, b, y) = 
eeh(F(u, b, x) + hF(u, b + 1, x) + h’F(u, b + 1, x)/2! + .a+ ) are related by a 
continued fraction. Indeed 

F(u, b + n + 1, x) b+n-a 
= F(u, b + n, x) F(u, b + n + 2, x) 

(23) 
(b+n+x)-x 

F(u, b f n + 1, x) 

leads to the continued fraction 

F(a, b + 1,x) _ (b - a>1 x(b + 1 - a)] x(b + 2 - a)\ 

F(a, b, x) - I(b+x) - ](b+l+x) - J(b+2+x) -**.* 
(23) 

The structure of the above continued fraction is simpler in the economy of 
operations than the related one for M(a, b + 1, x)/M(u, b, x) discussed by Perron 
[8, p. 1261. Simple linear algebra applied to (5) and (6) allows one to derive the 
formula 

(b - al x(b+l-a)/ x(b + n - a>/ 
l(b +x) - J(b + 1 f x) - *** - j(b + n +x) 

F(a, b + 1, 1 _ F(u,b+n+l,x) U(u,b+l,x) 
= F(a, b, x) u(u, b + II + 2, x) F(u, b + 1, x) 

x l-F(u,b+n+l,x) U(u,b,x) -I 
U(u, b + n + 2, x) F(u, b, x) * 

(25) 
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Hf h(a) > 0 and Re(x) > 0 then one sees directly from (3) and (4) t 
lim n-ta3 F(a, b + n + 1, x)/U(a, b + n + 2, x) = 0. This is thus the classic argurn~~~ 
the convergence of continued fractions generated by three term recurrence relations. 

Thus the real nature of the continuation operators as opposed to the ideal Taylor 
series is not straightforward. For this reason it surprised us that it was possible to 
demonstrate that TX,, is error correcting at the quotient level and that one can 
actually make assertions about the results entirely in terms of observable q~a~t~~i~s, 
the initial and final values computed and that the second solution is not d~r$~~~y 
present in the stability formulas. 

In [ 131 we considered a function T and wrote T(u(E + 6)) = T(zs)(l + 5fu; E)E) to 
motivate the definition of 5,(u) = uT’(u)/T(u), which was termed the $tab~~ity~cto~ 
of T at U. If T is a two-dimensional transformation of the form T( 
(T,(zl, ~1, T,b, v>>, w h ere each component is a complex function of two c 
variables, then one defines the stability matrix 

The generaiization to any number of dimensions is obvious. 
If S and T are dimensionally compatible transformations for which one can form 

the composition TS then one has the chain rule 

for a vector w, a rule which is valid for differentiable functions which do not vanish 
at the arguments. 

Given a transformation of the form T(u, v> = (Au $ 
the associated fractional linear map by 

v) we shall define 

H(w) = F(u, v) = “,; 1 Fv ? 

where w = u/v. If P(u, v) = u and Q(u, v) = v then it is easy to demonstrate t 
theorem to follow. 

THEOREM. 1f T, Fv and H are as before and w = a/v then 

e,(w) = 
UV 

PT(u, v) QT(u, v) 
det T = det 6,(u, v). 
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COROLLARY 1. Let T be either of the continuation operators Tx,Y or S,,,. One 
has the formula 

det B,(u, u) = 
PT(u, u;QT(u, u) e 

-h(Y/X>-b, (31) 

where h = x - y. 

ProoJ: One notes that det T= W(y)/W(x) = e-h(y/x)-b, where W(x) is the 
Wronskian (13). 

COROLLARY 2 (Stability at quotient level). If a > 0, and x > y > 0, then one has 

0 < det O,(U(a, b, x), DU(a, b, x)) < 1, 

0 < det BT( U(a, b, x), U(a, b + 1, x)) < 1, 
(32) 

where S = S,,, and T= TX.,. 

ProoJ We demonstrate the proof for S. One obtains 

det B,(U(a, b, x), DU(a, b, x)) = 
U(a, b, x) DU(a, b, x) - 

u(a, b, Y) Way b, Y> 
e “(Y/x>-” (33) 

from (31). One obtains U(a, b, x)/U(a, b, y) < 1 directly from the integral represen- 
tation (3). When h =x - y one also sees that 

V-Q, b, x)/D@, b, Y)> e-“(.v/x>-b 

= jhm e-‘(t - h)‘( y + t)b-a-l dt e-‘ta( y + t)b-a-’ dt < 1. (34) 

5. APPLICATION TO THE EVALUATION OF K,(x) AND K,(x). 

The Bessel functions K,(x) and K,(x) are special cases of Macdonald’s functions 

K,(x) = jam e -xcosh ’ cash vu du. 

The relation U(v + l/2, .2v + 1, 2x) = n-l” e”(2x)-“K,(X) yields 

rPU(1/2, 1,2x) = eXK,(x), 

(35) 

71’/‘DU( l/2, 1, 2x) = eX(K,(x) - K,(x))/2. 
(36) 

If S,,, denotes the continuation operator (17) for (U(1/2, 1, x), DU(1/2, 1, x)) then 

S,,,,,(e”Kdx)~ eXGW) -K,@))/2) = @“~d.h eY(!W4 - Kl(y))/2). (37) 
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TABLE I 

Degree of Precision That Was Obtained in Downward Continuation 
and the Number of Terms That Were Summed to Obtain Convergence 

x w(x) K,(x) n c 

10 
9 
8 
7 
6 
5 
4 
3 
2 
1 
0.5 
0.4 
0.3 

0.39163 19344 0.41076 65704 (initial) 
0.41229 5549 0.43462 5245 ii l/l0 
0.43662 3018 0.463 14 9092 11 119 
0.46584 5096 0.49807 1575 12 l/S 
0.50186 3130 0.54217 5910 12 117 
0.54780 7564 0.60027 3858 13 116 
0.60929 7669 0.68157 5945 14 l/5 
0.69776 1591 0.80656 3479 16 ,114 
0.84156 821% 1.03347 6846 20 l/3 
1.14446 3078 1.63615 3482 28 w 
1.52410 9383 2.73 100 96% 28 l/Z 
1.66268 2086 3.25867 38s 13 I/5 
1.85262 72% 4.12515 772 15 ij4 

In the next section we shall explain why this continuation procedure behaves even 
better than one might expect. The number of terms required to obtain a given 
accuracy does not vary much with x and is essentially a function of c = h/x 
(h = x - y). Table I shows the results obtained on a HP calculator with floating- 
accuracy of 10 digits. The series summation was terminated when there was no detec- 
table change in the partial sum, whereupon the content of the term counter register 
was also noted. 

6. APPLICATION TO THE EVALUATION OF MADELUNG SUMS 

Te series we seek to evaluate are of the form 

M = f cos(nc)K,(nb) = c2 fj cos(nc) e-“bU(2nb), (38) 
n=1 n==1 

where U(X) = U(1/2, 1, x) is as in (36). Despite the exponential convergence of the 
series, the computation was observed to be excessive when b is small. More~ve~~ in 
the polymer calculations it is seen that the values of c are determined by sporadic 
intermolecular distances and the usual methods for evaluating discrete Fourier 
transforms are not appropriate. 

Commencing with easily determined initial data we updated the confluent functions 
with 

s zn~,z~n-&Wnb), U’Qnb)) = (UW - lb), U’Mn - IPI) (39) 
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for n = N, N - l,..., 2. When b is small one commences with large n and the 
continuation series converges at the same rate as the geometric series 
l/n+ l/n2+ l/n3+... . Thus most function values U(2nb) are generated very 
rapidly. The quantities exp(-nb) cos(nc) are obtained through backward recursion 
using the complex functional relation exp(-n(b + ic)) = exp(-(n + l)(b + ic)) 
exp(b + ic), but this recursion is vulnerable because initial values at large arguments 
have a large intrinsic error and because the argument drifts during the recursion. 

When x > y the continuation operator S,,, is stable and the behavior of the process 
under iteration is quite good. An important contributor to this good behavior is that 
series (17) becomes a series of positive terms because the signs of the derivatives of 
U(a, b, x) alternate. Moreover, with proper programming, there is no argument drift. 
Additional good behavior comes about because S,,, is strongly error correcting at the 
quotient level. In order for errors to be passed in the result SX,(u, V) = (u’, v’) both 
values U’ and U’ have to be perturbed by the same scale factor. 

Our recursive economies have allowed us to experiment with Madelung sums with 
parameter values around b = 10-2, for which we were able to obtain satisfactory 
results. Nevertheless, for very small parameter values the method in [4] is attractive. 

7. BESSEL FUNCTIONS OF PURE IMAGINARY PARAMETER 

The Bessel functions of pure imaginary parameter K&C) are real functions and are 
discussed in Lebedev [7]. The usual formulas for Kiv(x) lead to severe cancellation- 
error difficulties. In physical applications (Jackson [6]) it is also desirable to compute 
the derivatives K;,(x). 

TABLE II 

Function Values and Starting Indices for the Miller Formula (43) 
for Computing to the Digits Indicated” 

X eXK3&) 44 X e.‘K,,i(x) n(x) 

-2.4970483798(-21) 
-6.4965534241(-21) 
-2.7189381187(-20) 

8.1506023622(-20) 
2.3408091735(-19) 
4.0109112407(-19) 

1205 
640 
410 
319 
248 
215 

-1.5434276621(-18) 183 
1.6367027486(--18) 161 

--1.3472488255(-18) 148 
8.6847879814(-16) 136 
2.6398713250(--16) 121 

-8.0221524854(-15) 103 

16 1.2497911866(-15) 90 
I8 -3.5137264538(-14) 87 
20 7.4161663636(-13) 76 
30 1.6539115409(-S) 58 
40 1.6332522588(-6) 46 
50 1.7921292569(-6) 42 

60 8.0874542215(-5) 39 
80 4.8890403838(-4) 32 

100 1.3748218952(-3) 25 
150 5.0906540616(-3) 23 
200 9.3481184525(-3) 19 

’ The last digits shown are not completely certain. 
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When one applies the continuation operator TX,Y to eXMi,(x), interpret 
confluent function, one experiences success, but S,,, turns out to be un 
Examination of Table II shows that e”Ki,(x) decreases rapidly as x 
TXqY this decrease is brought about by multiplication by exp(-(x - y)), but 
this decrease is brought about by subtraction and thus ieads to poor number 
tation. For best results TX,, needs to be applied successively with the ~o~st~a~~t 
(h/x) < l/v with h = x - y > 0 and v > 0. 

The continuation requires good initial values, but since ere are no tables, these 
are hard to come by. It is for this reason that we now discuss some formulas for 
generating initial values. It turns out that with our Miller formula a~~roac~ [I 
K,,(x) and K&(x) can be computed with real arithmetic. Set U(iv + n i- tY 
2iv + I, 2,x) = U(n). One has 

M;“(x) = KJX) 
( 

(1 +4v2) U(1) 1 - - 4x UP) -5 1 

e”K,Jx) = + 
( 

112 

1 ( 
1 + (12 +4v2) U(1) 

4’ * I! U(0) 

+ Cl2 + 4v2)(32 + 49) U( 1) U(2) -l 
42 . 2! qiqq-q+ ..i i ’ 

(41) 

The quotients U(n)/U(n - 1) are real and have the expansions 

u(n) 41 (2n + 1)’ + 4vz / (2pz + 3)* -I- 4vi j 
u(n-l)=/2(n+x)- [2(n+l+x) - 12(n$2$x) -.‘D* 

(4 2) 

Backward recursion with the relation 

U(n) 4 
U(n - 1) = 8(n + x) - ((2n + 1)” + 4v2) U(n i 1)/U(n) 

along with nested operations was demonstrated in [ 141 to be an attractive a~~r~a~~ 
to the evaluation of (41). An ALGOL code is available on request. We have observe 
that the starting index n(v, x) for evaluating our Miller formula to fixed number of 
significant digits satisfies the relations n(v, x) < n(v’, x) for 0 < v < Y’ and I~(v, x) > 
n(v, x’) for 0 < x < x’. An approximation to the starting index function in Table IJY is 
thus good for producing values of Kiv(x) in the region 1 < x < a3 and 0 < v < 30. 

Another effective algorithm for computing the Bessel functions Ki,,(x) is described 
by Boris and Oran [2]. This paper also refers to more extensive tables of these 
functions. 

Thacher [ 151 used an entirely different approach to develop a formula from which 
one can radily deduce (40). Our Miller formula (41) is closely related to the one 
devised by Temme [ll, 121. 
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We found the operator method Tx,y to be successful but found it annoying that the 
recursive quantities generated need to be complex numbers. 
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